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______________________________________________ 
Abstract  

Historically, statistical, forecast, vulnerability, epidemiological morbidity, mapping has involved the 
analysis of disease incidence employing prevalence as a response variable.  Often these variables occur as discrete, 
finite, aggregate counts over a georeferenceable, provincial geographical region subdivided by administrative 
departmental boundaries.  Unfortunately, regression models have not been generated from empirical, department-
level, georeferenecable, morbidity datasets to determine optimally parameterizable covariates related to prevalence 
rates. In this research, demographic explanators (e.g. age, number of department hospitals etc.,) and landscape 
goemorphologically stratified, empirical measures were forecastes employing regression specifications and temporal 
data collections for optimally targeting departments that had higher prevalence rates in Guatemala.  The model 
followed the standard y = mx + b. The significance level for the study was chosen before data collection, and set to 
5%.The significance level defined for the epidemiological study, a, was the probability of the study rejecting the 
null hypothesis [i.e., georeferenecable,  department-level, geo-morphologically stratified  explanator, associated to 
morbidity can be optimally  regressed with normal error distributions ( i.e., non-heteroskedastic, non-multicollinear, 
residual effects]  given that it were true; and the p-value of a result, p, was the probability of obtaining a result at 
least as extreme, given that the null hypothesis were true. The distribution was Gaussian. The model variance 
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implied a substantial variability in the regressed covariates associated with the morbidity across the georeferenced 
departments. Since the morbidity model revealed a normal distribution of the, diagnostic, epidemiological, 
morbidity forecasts, and the likelihood that a relationship between two or more variables in the department-level, 
empirical, estimator datasets was caused by something other than random chance. Compilation of additional and 
accurate geo-spatiotemporal, department-level, morbidity data in Guatemala may allow continual updating of 
frequentist and non-frequentist (e.g., iterative Bayesian) random effects term estimates. In so doing research 
intervention teams may be able to bolster the quality of regressors in vulnerability, geo-morphologically stratified, 
epidemiological datasets for future modeling efforts. 

Keywords:   Morbidity, Guatemala, GIS, Regression Modeling, Gaussian. 

______________________________________________ 

 

1. Introduction 
What are the influencing factors to morbidity in developing countries? What is the causation and why does 

morbidity occur at a given geographical location (henceforth geolocation) over another area? Distinguishing 
predictive probability distribution in regression models may aid in localizing statistically significant optimal, 
parameterizable covariates associated with morbidity statistics. Morbidity statistics is a type of statistics employed 
largely in the public health epidemiology (www.cdc.gov). These data focuses on the disease progression of a given 
population or sub-population, and or geolocation whilst quantitating the significance, prevalence, or expanse of 
disease in a group.   

Currently, exponential distributional algorithms are available in the literature for quantitatively regressing 
morbidity–related georeferenceable descriptors. For example, predictors of post-operative mortality, morbidity, and 
long-term survival in patients with stage IV colorectal cancer was examined by Stillwell and Boden (2011) [1]. This 
study aimed to identify independent explanatorial regressors of postoperative mortality and morbidity as well as 
independent inferential covariates of long-term survival. The study was planned as a retrospective single-institution 
review. This study took place at the Department of Surgery at the Royal Brisbane and Women's Hospital, in 
Australia, between 1984 and 2004.Prospectively collected data were extracted from the records of 1,867 patients 
undergoing treatment for colorectal cancer. The outcomes for 379 patients undergoing surgical resection of their 
primary colon or rectal tumor in the presence of unresectable synchronous metastases were analyzed. 

Independent predictive factors for postoperative mortality and morbidity as well as long-term survival were 
assessed by use of logistic regression and Cox regression analysis. Thirty-five (9.2%) patients died in the 
postoperative period and morbidity was 48.3%. Median survival was 11 months. Thirty-day postoperative mortality 
was independently associated with medical complications (P < .001), emergency operations (P = .001), female sex 
(P = .002), and age (≥ 70; P = .007) on regression analysis. Elderly (≥ 70) patients with either advanced local disease 
or extrahepatic metastases were at a particularly high risk. Preoperative predictors of surgical morbidity included 
male sex (P = .028) and advanced local disease (P = .036). Preoperative explanatory predictors of medical 
complications included repeat operations (P < .001), elevated urea levels (P = .017), and emergency operations (P = 
.003). Independent factors associated with poor overall survival included medical complications (P < .001), nodal 
stage (N2) (P = .004), poor tumor differentiation (P = .006), and apical lymph node involvement (P = .042). A 
subgroup of patients with advanced nodal disease (N2) and a poor tumor differentiation had a significantly poorer 
prognosis. The vulnerability, forecast, epidemiological, regression model found that elderly patients with advanced 
local disease or extrahepatic metastases were at high risk of 30-day postoperative mortality.  

In statistical, predictive, vulnerability, epidmeiological, modeling, regression analysis is a statistical process 
for estimating the relationships amongst various variables (e.g, sociodemiographic, time series etc.) [2]. It includes 
many techniques for modeling and analyzing several variables, when the focus is on the relationship between an 
explanatory, dependent variable and one or more independent variables ('prognosticators'). More specifically, time 
series, regression analysis for a dataset of  epidemiological, morbidity, geo-morphologically stratified, parameter 
estimators  may  aid in understanding understand how the typical value of the dependent variable (a 'criterion 
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department-level, morbidity prevalence statistic) changes when any one of the independent variables is varied, 
whilst the other independent covariates are held fixed.  

 Most commonly, the conditional mean y (the dependent variable) given the value of x (independent 
variable) in a geomorphological, stratifiable, forecast, vulnerability, morbidity, department-level, georeferenecable, 
epidemiological model  may be assumed to be affine of x. Less commonly the median or some quantile of the 
conditional distribution of y given x  is expressed in a regression analysis [Hosmer and Lemeshew 2002]. Based on 
probability theory, two time series dependent, morbidity events R and B may be  conditionally independent given a 
third event Y precisely, if the occurrence of R and the occurrence of B are independent events in their conditional 
probability distribution given Y . If R and B are conditionally independent given Y in the model, knowledge of 
whether R occurs will provide no information on the likelihood of B occurring. Further, knowledge of whether B 
occurs in the model will provide no information on the likelihood of R occurring. In geometry, a transformation, 
between affine spaces preserves points, straight lines and planes [3].  

An affine transformation, however,  may not necessarily preserve angles between lines or distances 
between, explanatorial, morbidity-related, georeferenceable, capture points (geolocations of hyperendemic 
morbidity  foci).The model may preserve ratios of distances between the capture points lying on a straight line in an 
empirical, department-level, epidemiological  dataset of, geomorphological-stratified, geo-spatiotemporally 
geosampled, morbidity statistics, Linear regression focuses on line distribution which focuses on x rather than joint 
distribution of y and x, which is the domain of a multivariate analysis [4]. 

The Poisson distribution is popular for probability modelling the number of times an event occurs in an 
interval of time or space which may be robust when optimally regressively quantitating department-level, geo-
morphologically stratified, geo-sampled, geo-spatiotemporal, morbidity-specified, vulnerability parameters. A 
Poissonian regression model is a generalized linear model used to y model count data and contingently [5]. 
In probability theory and statistics, the Poisson distribution , is a discrete probability distribution that expresses the 
probability of a given number of events occurring in a fixed interval of time and/or space, if these events occur with 
a known average rate and independently of the time since the last event [5].  The Poisson distribution can also be 
employed for determining the number of events based on other specified intervals such as distance, area or volume 
measurements [6].  Poissonian distribution may be a distribution sampling based on the number of frequency, time, 
that depends on only one parameter, the mean number of morbidity events given set times of the same span 

Poisson models constructed from a generalizable dataset of hierarchical, morbidity, statistical model, geo-
referenceable, parameterizable unbiased, frequency regressors will assume the response variable y has a Poissonian 
distribution. The logarithm of a probability, Poissonian, morbidity-related, department-level, geomorphological 
stratified, explanative or expected regressable, attribute value may be modeled by a linear combination of unknown 
parameters. Hence, a discrete probability distribution may be robustly, parsimoniously rendered from a Poissionian, 
morbidity-specified, forecast, vulnerability, algorithmic model that expresses the probability of a given number of 
potential, geo-referenceable, events or covariates occurring in a fixed interval of time and/or space, if these events 
occur with a known average rate and independently of the time since the last sample event or sampled, unbiased 
estimator.  For example given a Poisson process, the probability of obtaining exactly  successes in  trials may be 

given by the limit of a binomial distribution [1.1]henst constructing a 
morbidity, department-level, forecast, vulnerability  model. In probability theory and statistics, the binomial 
distribution with parameters n and p is the discrete probability distribution of the number of successes in a sequence 
of n independent experiments, each asking a yes–no question, and each with its own boolean-valued outcome: 
a random variable containing single bit of information: success/yes/true/one (with probability p) 
or failure/no/false/zero (with probability q = 1 − p)  [7]. 

Jacob et al. (2014) [8] viewed equation [1.1] as the distribution of  a function of the expected number of 
successes instead of the sample size  which had a  fixed , which then optimally quantitated an empirical 
dataset of geo-morphologically stratfieid, multidrug resistant tuberculosis, (MDR-TB)   estimators in a Poissonian 
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model employing for deducing forecastable,time series, vulnerability 
covariates for San Juan de Lurigancho Lima, Peru. Letting the sample size  become artificially inflated, in the 
morbidity model the distribution 

approached = = =

= =  (i.e., Poisson distribution) (see 
Papoulis 1984, pp. 101 and 554; Papoulis, A. "Poisson Process and Shot Noise." Ch. 16 in Probability, Random 
Variables, and Stochastic Processes, 2nd ed. New York: McGraw-Hill, pp. 554-576, 1984.). Note that the sample 
size   completely dropped out of the probability function in the MDR-TB model, which had the same functional 
form for all values of .  

Jacob et al. (2014) [8] then constructed multiple, georeferenced, hierarchical models accompanied by non-
generalized predictive residual, uncertainty, non-normal, diagnostic tests employing multiple, covariate, coefficient 
estimates clinically-sampled at the epidemiological study site. A SAS-based, agglomerative, polythetic clustering 
algorithm was employed to cartographically delineate, high and low, MDR-TB clusters geo-morphologically 
stratified by prevalence data. Univariate statistics and Poisson regression models were then generated in R and 
PROC NL MIXED, respectively. Durbin-Watson statistics were derived. An iterative, non-frequentist, probabilistic, 
Bayesian, estimation matrix was then constructed employing normal priors for each of the error coefficient estimates 
which revealed both spatially structured and spatially unstructured effects in the MDR-TB geo-spatiotemporal, geo-
sampled, geo-referenceable data. The residuals in the high, MDR-TB, explanatory, prevalent cluster revealed two 
major uncertainty estimate interactions: 1) as the number of bedrooms in a house in which infected persons resided 
increased and the percentage of isoniazid-sensitive infected persons increased, the standardized rate of tuberculosis 
tended to decrease; and, (2) as the average working time and the percentage of streptomycin-sensitive persons 
increased, the standardized rate of MDR-TB tended to increase. In the low MDR-TB, time series, dependent cluster, 
single marital status and building material used for house construction were important predictors. The authors 
conclude that latent non-normal, (e.g., lepokurotic distributions, unquantitated heteroskedastic parameters), 
erroneous, propogagtional probabilities in empirically regressed MDR-TB, clinical-geosampled, parameterizable, 
Poissionized estimates can aid in distinguishing unbiased inferencial covariates and non-zero first-order lag 
autocorvariate error in frequentistic and non-frequentistic, optimally regressable Multi-Drug Resistant Tuberculosis 
time series estimators.  

An explicative, Poissonian, morbidity, forecast, vulnerability, epidemiological, morbidity model 
geosampled process may occur at a constant rate  per unit time. Suppose that an epidemiologist or a public health 
officer interprets the changes in a Poissoninan process from a parameterizable morbidity-specfied, estimator point of 
view, (i.e., a change in the Poisson process for defining a termination of a system,). This process would count the 
number of terminations as they occur in an empirical, departmental-level, geo-referenceable, geomorphological, 
stratified, epidemiological dataset in regression space. In so doing, the rate of change  may be interpreted as a 
hazard rate (or failure rate or force of morbidity) in the vulnerability forecasts.  With a constant force of morbidity, 
the time until the next change may be exponentially distributed in a department–level model.  

The epidemiologist or public health officer may be able to optimally quantitate the hazard rate function in a 
more general setting in the probability paradigm. The hazard function (also known as the failure rate, hazard rate, or 
force of mortality) is the ratio of the probability density function to the survival function , given by 

= = where is the distribution function ( Evans, M.; Hastings, N.; and Peacock, B. 
Statistical Distributions, 3rd ed. New York: Wiley, 2000. p. 13) In probability theory, a probability density function 
(PDF), or density of a continuous random variable, is a function that describes the relative likelihood for this random 
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variable to take on a given value [9]. However, the department-level, geo-morphological, stratified, explanatory 
process that counts the number of terminations may not have a constant hazard rate in a morbidity model 
specification, but instead may have a hazard rate function , based on a function of time .Such a counting 
process may be  quantifiable at the department-level employing a non-homogeneous Poisson process, morbidity 
model.  

A non-homogeneous Poisson process is similar to an ordinary Poisson process, except that the average rate of 
arrivals is allowed to vary with time. Many applications that generate random points in time are modeled more 
faithfully with such non-homogeneous processes. The mathematical cost of this generalization, however, is that a 
forecast, vulnerability, morbidity –specified, optimizable model may lose the property of stationary increments. 
Non-homogeneous Poisson processes are best described in measure-theoretic terms (see Appendix 1). A stochastic 
model constructed based on a nonhomogeneous Poisson process may reveal iteratively interpolative, covariates 
associated with a hyperendemic, department-level, and capture point. Further, the formulation may allow for test 
coverage and detection coverage for empirical geo-referenecable, geo-sampled, department-level, geo-
spatiotemporal, epidemiological, geo-morphologically stratified, morbidity statistics whilst providing a new 
decomposition of the mean value function.  

Consider a nonhomogeneous Poisson process on [0,T][0,T] with mean value function m(t)m(t) for 
t∈[0,T]t∈[0,T] in a forecast, vulnerability, morbidity model. If an epidemiologist or public health officer lets X1X1 
denote the time of the first  termination event  It may be shown that (X1|N(T)=1)(X1|N(T)=1) has the following cdf: 
F(x)=m(x)m(T),x∈[0,T]F(x)=m(x)m(T),x∈[0,T]. In probability theory and statistics, given two jointly 
distributed random variables X and Y, the conditional probability distribution of Y given X is the probability 
distribution of Y when X is known to be a particular value {Freedman 2005] In this case x in the model  may would  
refer to the morbidity-related event (X1|N(T)=1)(X1|N(T)=1) not just F(x)=m(T)F(x)=m(T). In so doing, robust 
vulnerability georeferenceable forecastable morbidity statistics may be procured from an epidemiological, empirical 
dataset of vulnerability parameterizable, unbiased estimators. 

       Jacob et al. [8] employed a Monte Carlo simulation to assess the statistical properties of some Bayes where only 
a few time series, vulnerability data parameter estimators on a system was governed by a nonhomogeneous Poisson 
process where there was only imprecise prior information available. In particular, two Bayes procedures were 
analyzed employing truncated data. The first model employed a uniform prior probability distribution function 
(PDF) for the power law and a noninformative prior PDF for alpha, while the other employed a uniform PDF for the 
power law while assuming an informative PDF for the scale parameter obtained by employing a gamma distribution 
for the prior knowledge of the mean number of failures in a given time interval. For both cases, point and interval 
estimation of the power law and point estimation of the scale parameter were exploited. Comparisons were given 
with the corresponding capture point and interval maximum-likelihood estimates for sample sizes of 25 and 100. 
The Bayes procedures were computationally much more onerous than the corresponding maximum-likelihood ones, 
since they in general required a numerical integration. In the case of small sample size, however, their use may be 
justifiable by the exceptionally favorable statistical properties shown when compared with the classical ones. In 
particular, their robustness with respect to a wrong assumption on the prior beta mean  was interesting based on the 
Poissonian non-homogeneous distributed model Hence various characterizations of the ordinary Poisson process, in 
terms of the inter-arrival times, the arrival times, and the counting process, and their characterizations may involve 
the counting process leading to the most natural generalization of a  non-homogeneous processes for a departmental 
–level, geosampled, geomorphological stratified, geo-classified, landscape date feature attribute. 

 

Consider a morbidity process that generates random points in time in a Possionian vulnerability, morbidity 
model. Then let N denote the number of explanatorial random points in the interval (0,t] for t≥0, so that N={Nt:t≥0} 
is the counting process. More generally, N(A)would  denote the number of random  morbidity, explanatorial,  points 
in a measurable A⊆[0,∞) in the  model so N would be  random counting measure. As before, t↦Nt would be a 
random distribution function and A↦N(A)would be  the random measure associated with the morbidity probability 
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distribution function. Suppose now that r:[0,∞)→[0,∞) is measurable in the model  and dm:[0,∞)→[0,∞) by 
m(t)=∫(0,t]r(s)dλ(s). From properties of the integral in the forecast, vulnerability, morbidity, Poissonian model 
increasing right-continuously on [0,∞)  a robust  distribution function would be rendered. The positive measure on 
[0,∞) associated with a geosampled, department-level morbidity statistic may be optimally identifiable on 
measurable A⊆[0,∞) by m(A)=∫Ar(s)dλ(s)m. Thus, m(t)=m(0,t] and for s,t∈[0,∞) with s<ts<t, 
m(s,t]=m(t)−m(s)m(s,t]=m(t)−m(s) should render statistically significant, geomorphologically stratifiable, geo-
spatiotemporally dependent, georeferenceable, demographic and landscape, paremeterizable covariates.  

Recall that mean and variance of Poisson distribution are the same; e.g., E(X) = Var(X) = λ. However in 
practice, the observed variance is usually larger than the theoretical variance and in the case of Poisson, larger than 
would be the mean. This is known as overdispersion, an important concept that occurs with discrete data. Here we 
assumed that each term in an forecast, vulnerability , morbidity, epidemiological Poisson, model  has the same 
probability  Analyses assuming binomial, Poisson or multinomial distributions are sometimes invalid because of 
overdispersion [5].  

 
We constructed a regression models (Poissonian) employing geo-morphological stratified, explanative geo-

referenceable datasets of morbidity covariates ge-osampled in Guatemala.  Regression is based on the quality of the 
predictor variable as an outcome variable and which selected variables have the heaviest weight on the dependent 
variable [10]. Our covariates were synthesized from existing morbidity time series, geo-sample datasets at the 
departmental level in Guatemala. Our assumption was that a frequentist, covariate at the departmental-level would 
aid in determining causation of morbidity in Guatemala. Our objectives were; 1) to construct a Poisson model with a 
95% confidence interval employing multiple demographic and landscape explanatory, independent variables 2) to 
tease out noisy (e.g., variables that do not have a normal error distribution) feature data attributes in the vulnerability 
forecasts; and, 3) to check any violations of assumptions (non-homoskedasctic residuals) in a department–level, 
geomorphological stratified, morbidity, regression analyses for Guatemala.  

 
2. Materials and Method 

2.1 Study site 
Guatemala is located in Central America. The country is bordered by Mexico on the west and north, Belize 

to the north east, El Salvador and Honduras on the south east. To the southern coast is the Pacific Ocean with the 
Caribbean Sea on the mid-east gap between Belize and Honduras. Guatemala is the most populated county in 
Central America, with an estimated 15.8 million.  Guatemala is broken down by departments, totaling twenty-two. 
Within those departments consists of municipalities and varies by department [11]. 

Guatemala takes up a total of 108,889 km2. It has three main regions: the highlands, the Pacific coast, and 
Peten region. The northern portion of Guatemala, which is the department of Peten, is imperceptibly populated. 
Most major cities are along the southern coastal regions of the country (Figure 1). 
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Figure 1 – The Guatemala study site 

2.2. Data Gathering 

The source for Guatemalan mortality data was obtained from the National Institute of Statistics Guatemala 
(INE Guatemala) with Microsoft Excel spreadsheets [12]. We worked with data collected for 2014 since year, there 
was the most data completed. The excel spreadsheet was prepared for Statistical Analysis System (SAS). Using only 
data from 2014 at the department level, death count, gross mortality rate, and mortality rate by malnutrition (E40-
E46) for every 100,000 inhabitants were lined up as the dependent variables (observations). Rates for all three were 
lined up by all twenty-two departments (variables). Mortality rates cause externally for 100,000 habitants, rate of 
mortality from malnutrition for every 100,000 inhabitants for 2014, and gross mortality rate of mortality from 
malnutrition for every 100,000 inhabitants for 2014 were analyzed for Guatemala’s twenty-two departments. The 
gross mortality rate for every 100,000 inhabitants for 2014 was independent variable was applied to the model.  

Specific demographic data were selected as primary targets for this study. These included ethnicity of age 
groups of dead by department, sex of dead by residential department, and geographic area type of dead and ethnicity 
type of dead by department. Although there were more data provided from the database, some were omitted because 
they were not attached to a geographical location and several pieces of data were missing. This was the case for data 
labeled “ignorado” (ignored), “extranjero” (foreigner). There are many recognized ethnicities in Guatemala, the 
main groups which were collected were Maya, Garifuna, Xinka, and Mestizo/Ladino. For this analysis, other, 
ignored, Garifuna, and Xinka were excluded. 

The figures below are of Guatemala in ArcMap. Figure 2 shows Guatemala with its departmental 
boundaries. Figure 3 shows Guatemala City with several data layers. Point of interest and places are historical and 
tourist sites. Artificial land use is land used for commercial and residential purposes. Natural land use is land use as 
parks. Figure 4 is a map of the northern region of Guatemala, the entire department Peten. We noticed that as we 
have the same layers applied as in Figure 3, Peten is noticeably less populated than the southern region of 
Guatemala. 
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 Figure 2 - Departments in Guatemala [23]    Figure 3 - Guatemala City [23][24] 
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Figure 4 - Region/Department of Peten [23][24] 

2.3 Regression analyses 
Although logistical regression modeling with co-binary outputs are used for reviewing morbidity statistics, 

we employed a Poisson probability regression as the Guatemalan departmental datasets had count data.  Unlike a  
binary logistic regression model  which employs  independent variables where each covariate is   log-transformed so 
as to render a  dichotomous outcome ( 0= absence , 1=presence), a Poissonian probability paradigm uses actual 
count data; hence a more robust  non-deflated pseudo R2  may be rendered [5]. Poisson probability, regression 
analyses were employed to infer the relationship between the geo-sampled, time-series, explanatorial, endemic, 
count,  data variables and the archived department-level anthropogenic characteristics (i.e., independent variables). 
Further, since we had continuous variables that represented the explanatory regressors, the Poisson model was the 
more logistical application. 
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The relationship between the geo-sampled, department -level, endemic, socio-demographic, and landscape 
covariates was investigated by single variable regression analysis in PROC REG. Since prevalence data are binomial 
fractions, a regression model was employed, as is standard practice for the analysis of the department-level data.  

 

The regression analyses assumed independent counts (i.e., Ni), taken at multiple, geo-sampled, geo-
referenced, department-level  The geo-spatiotemporal-related, department-level counts were then 

described by a set of variables denoted by matrix where a was a vector of covariate coefficient indicator 
values for a interpretively geo-sampled, endemic transmission-oriented, explanative foci i. The expected value of 

these data was given by where was the vector of parameterizable non-redundant 
covariates in the endemic, transmission-oriented, time-series, operationalizable, epidemiological,  prognosticative, 
department-level, geomorphological-stratified,  risk model where the Poisson rates were given by 

The rates parameter was both the mean and the variance of the Poisson distribution 
for each geo-sampled, endemic, morbidity, georeferenceable, departmental geolocation i. The dependent variable 
was department-level mortality. The Poisson regression model assumed that the geosampled, operationalizable, 
expository predictors was equally dispersed, that is, that the conditional variance equaled the condition mean. Partial 
correlations were then defined after introducing the concept of conditional distributions.  

We initially restricted ourselves to just the explanatorial, conditional distributions obtained from the 
multivariate normal distributions. We noted an random vector Z which we partitioned  into two random 

vectors X and Y where X was an vector and Y was an vector in the equation The 
conditional distribution properties of the regressed endemic morbidity operationalizable, asymptotical, endemic, 
transmission-oriented, parameterizable, department-level, socidemiographic covariate coefficients were then 
defined. Thereafter, we partitioned the mean vector and covariance matrix in a corresponding manner. That is, 

and . In so doing, optimally rendered the means for the regressed, time-
series, explanatorily geo-spatiotemporal, geo-sampled, interpretively interpolative, asymptotically normalized, 

endemic, georeferenced, socio-demiographic  prognosticative  variables in the set and along with  the 

variances and covariances for set The matrix provided the covariances between the observations [e.g.,  

and set ] as did matrix Any distribution for a subset of variables from multivariate normal, conditional on 
known infectious disease, geo-classified, eco-epidemiological values for another subset of variables has a 

multivariate normal distribution [3,8]. We noted that the conditional distribution of given the known values for 

was multivariate normal with a explanatorial, time series mean vector covariance 

.The procedure employed a maximum likelihood  
estimation to find the operationalized, time-series, dependent, regression coefficients. The data was then log-
transformed before analyses to normalize the distribution and minimize standard error. 

The Poisson regression model can be generalized by introducing an unobserved heterogeneity term for 
observation i. Thus, the individuals are assumed to differ randomly in a manner that is not fully accounted for by the 

observed covariates. This is formulated as where the unobserved heterogeneity 
term  is independent of the vector of regressors . Then the distribution of  conditional on  and  is 

Poisson with conditional mean and conditional variance : .  We let  be 



International Journal of Geographic Information System                                                                       
Vol. 4, No. 3, October 2017, pp. 1-22                                                                                                   
Available Online at http://acascipub.com/Journals.php          

 

 

11 

Copyright © acascipub.com, all rights reserved.  

the probability density function (PDF) of . Then, the distribution  (no longer conditional on ) is obtained 

by integrating  with respect to :  
The Poisson regression morbidity model was generalized by introducing an unobserved heterogeneity term 

for observation i. Thus, the individuals were assumed to differ randomly in a manner that is not fully accounted for 
by the observed covariates. This was formulated as 

 where the unobserved heterogeneity term  is independent of the vector of 
regressors . Then the distribution of  conditional on  and  is Poisson with conditional mean and conditional 

variance : . 

We let  be the PDF of  in the, department-level, stratified, morbidity model. Then, the 
distribution  was no longer conditional on   hence the distribution was obtained by 

integrating  with respect to :  
An analytical solution to this integral exists when  was assumed to follow a gamma distribution. This 

solution was a binomial distribution. When the model contains a constant term, it is necessary to assume 
that  in order to identify the mean of the distribution [3]. Thus, we assumed that  follows a 

gamma ( ) distribution with  and ,  
where  is the gamma function and  is a positive parameter. Then, the density 
of  given  is derived as 

 
 

Making the substitution  ( ), in the morbidity, department-level,epidemiological model the 
distribution was then rewritten 

as Thus, the department-level, 
stratified, morbidity distribution was derived as a gamma mixture of Poisson random variables. It had a conditional 

mean and conditional variance. 
 

3. Results  

A Poisson regression analyses was constructed in PROC REG to determine the relationship between the 
morbidity, count data and the departments.  The Poisson models were built by employing the, time-series, 
explanatory, endemic, department level, stratified, morbidity, parameterizable, demographic and landscape covariate 
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coefficients. We assumed that the log of the mean  was a linear function of independent variables, [i.e. 

] in the department-level morbidity model which implied that  
was the exponential function of the independent variables when 

 This, resulted in the distribution of the geo-sampled, 
parameter estimates (i.e., Y).  

 
The Poisson regression morbidity probability model was generalized by introducing an unobserved 

heterogeneity term for observation i. Hence, the individuals were assumed to differ randomly in a manner that is not 

fully accounted for by the specified morbidity covariates. This was formulated as  
where the unobserved heterogeneity term  was the independent of the vector of regressors . Then the 
distribution of  conditional on  and   was Poisson with conditional mean and conditional 

variance :  We let  be the PDF of  . Then, the 
distribution  (no longer conditional on ) was obtainable by integrating  with respect 

to : . 

 

In the regression analyses, of the department-level, geo-referenceable, explanatory, endemic, morbidity, 

demographic interpolative, asymptotically normalized data the null hypothesis was:  and the alternative 

hypothesis was:  We recorded the log-likelihood (i.e., LL) and  the likelihood ratio (LR) test to compute 
the LR statistic using –2(LL) (Poisson) and the LL (i.e., negative binomial). The asymptotic distribution of the LR 
statistic had a probability mass of one half at zero and one half - Chi-square distribution with 1 df. To test the null 
hypothesis at the significance level   the critical value of Chi-square distribution corresponding to significance 

level  whereby there was a rejection of  if LR statistic  The log of the mean, was 
generated  using a linear function of the independent variables 

whereby, in the regressed, time-series, endemic, transmission-
oriented, predictive, model which implied that   was the exponential function of the explanatory, diagnostic,  

department-level, independent variables when  The SAS 
model data was then log-transformed and run.  

 

As expected, the Poisson distribution was normalized so that the sum of probabilities equaled 1, 

since The ratio of probabilities in the explicative, morbidity, forecast, 

vulnerability, department-level model was given by  

The characteristic function for the Poisson distribution was (Papoulis 1984, pp. 154 and 554), 

and the cumulant-generating function was so in the morbidity 
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model The mean deviation of the Poisson distribution was given by The Poisson distribution 

was also expressable in terms of  the rate of changes, so that  The moment-generating 
function of a Poisson distribution in two variables is given by  [Haight 1967].If the independent 

variables , , ...,  have Poisson distributions with parameters , , ..., , then has a Poisson 

distribution with parameter  [ Freedman 2005].In the morbidity, forecast, vulnerability, epidemiological, 
department-level model, this parameter  was the cumulant-generating function which was quantitated as 

. In probability theory and statistics, the cumulants κn of a probability distribution are a set of 
quantities that provide an alternative to the moments of the distribution. [ Freedman 2005]  

We let be the moment-generating function, then the cumulant generating function was given by 

= = Where , , ..., were 

the cumulants. If is a function of independent variables, then the cumulant-generating function for is 

given by [13]. In probability theory and statistics, the moment-generating function of a real-
valued random variable is an alternative specification of its probability distribution. Thus, it provides the basis of an 
alternative route to analytical results compared with working directly with probability density 
functions or cumulative distribution functions [14].  

The tables below are the SAS outputs running PROC REG.  The results fit the Poissonian model.  See 
Tables 1 and 2 for output. 
 

Table 1 - Criteria for Assessing Goodness of Fit 

Criterion DF Value Value/DF 
Deviance 18 1.3116 0.0729 
Scaled Deviance 18 1.3116 0.0729 
Pearson Chi-Square 18 1.2298 0.0683 
Scaled Pearson X2 18 1.2298 0.0683 
Log Likelihood  69.3634  
Full Log Likelihood  -38.7283  
AIC   85.4565  
AICC  87.8094  
BIC  89.8207  
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Table 2 - Analysis of Maximum Likelihood Parameter Estimates 

Parameter DF Estimate Standard 
Error 

Wald 95% 
Confidence Limits 

Wald Chi-
Square 

Pr > ChiSq 

Intercept 1 1.1146 0.4345 0.2360 1.9662 6.58 0.0103 
County 1 -0.0076 0.0153 0.0377 0.0224 0.25 0.6177 
Malnutrition 1 0.0047 0.0248 -0.0438 0.0533 0.04 0.8483 
External 1 0.0072 0.0039 -0.0003 0.0148 3.53 0.0604 
Scale 0 1.0000 0.0000 1.0000 1.0000   

 
4. Discussion 

We constructed a Poissonian model to determine which explanatory covariate at a 95 percentile confidence 
interval was associated with morbidity at the department-level in Guatemala.  The probability model revealed robust 
covariates “malnutrition” “external causes” gross mortality rates” were significant at a 95% confidence interval.   

We checked all Poissonian assumptions in our model. The Poisson distribution is an appropriate model if 
the following assumptions are true 1) k is the number of times an event occurs in an interval and k can take values 0, 
1, 2, ….; 2) the occurrence of one event does not affect the probability that a second event will occur. That is, events 
occur independently; 3) the rate at which events occur is constant. The rate cannot be higher in some intervals and 
lower in other intervals; 4) two events cannot occur at exactly the same instant; instead, at each very small sub-
interval exactly one event either occurs or does not occur; (5) The probability of an event in a small sub-interval is 
proportional to the length of the sub-interval; or 6) the actual probability distribution is given by a binomial 
distribution and the number of trials is sufficiently bigger than the number of successes one is asking about [5]. 

The morbidity-related, Poissonian distribution reached a maximum 

when where  was the Euler-Mascheroni constant and  is a harmonic 
number, leading to the transcendental equation [] which could not be solved exactly for .  Euler-
Mascheroni constant , sometimes also called 'Euler's constant' or 'the Euler constant' (but not to be confused with 
the constant ) is defined as the limit of the sequence 

y= = where  is a harmonic number [15]. A harmonic number is a number of the 

form arising from truncation of the harmonic series. A harmonic number can be expressed analytically 
as where  is the Euler-Mascheroni constant and  is the digamma function. [i.e., 
 special function which is given by the logarithmic derivative of the gamma function (or, depending on the 
definition, the logarithmic derivative of the factorial] [5]. 

A generalization of the Poisson distribution may be employed to model the observed clustering of geo-
referenceable, geo-morphologically stratified, morbidity statistics. The form of this distribution may be given 

by where  is the number of geo-spatiotemporally dependent, 
explanative, morbidity-related paramterizable covariates geo-sampled at an epidemiological intervention study site 

Letting  in the model may render which indeed would be a Poisson distribution with . 
Similarly, letting   would render  
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Fortunately, the Poissonian morbidity model was not over dispersed (whenst variance was equal to the 
mean).  Hence, there was no requirement to use a negative binomial regression model with a non-homogenous 
gamma distributed mean to compensate for any outliers or other Poissonian noise.  Commonly, in Poissonian 
infectious diseases models, there are propagational uncertainties due to assumptions of regression modeling [2] [16]. 

 
Extra-Poison variation in a department level, epidemiological, time series dependent,  morbidity model 

may rest in its ability to utilize the specialized generalized linear model (GLM) it and residual statistics that come 
with the majority of GLM software. This may allow an epidemiologist or a public health officer to deduce the means 
for quantitatively testing different, geo-sampled, district-level morbidity, forecastable, vulnerability model 
estimators with tools built into the GLM algorithm. For example, further extensions to the respective Poissonian 
probability model constructed from the empirical geo-sampled, geo-spatiotemporal, department –level, morbidity 
data at the Guatemala study site may be customized depending on the type of underlying problem that is being 
addressed. These extended models can  include, handling excessive response zeros (e.g., zero-inflated Poisson, zero-
inflated negative binomial); hurdle models for handling responses having no possibility of zero counts (e.g., zero-
truncated Poisson and zero-truncated negative binomial); morbidity models having responses with structurally 
absent values (e.g., truncated and censored Poisson) and models having longitudinal or clustered  department-level  
morbidity data (e.g., fixed, random, and mixed effects negative binomial).  

 
Further, negative binomial generalized estimating departmental-level morbidity linear-based equations may 

also be devised for situations when the sampled data can be split into two or more distributional subsets if the 
models violate the assumption that the mean is equal to the variance. This capability is rarely available with 
morbidity models estimated using full maximum likelihood or full quasi-likelihood methods.  

 The ratio in our epidemiological, geo-spatiotemporal, morbidity model indicated that the probability 
distribution can determine the hazard rate function. In fact, the tabulated ratio was the usual definition of the hazard 
rate function in our model. That is, the hazard rate function was optimally definable as the ratio of the density and 
the survival function (one minus the conditional density function). 

  
 Given two jointly distributed, geo-morphological, optimally stratifiable department-level, time series, 

morbidity-related, exploratory, random variables X and Y at the Guatemala epidemiological, study site 
the conditional probability distribution of Y given X was the probability distribution of Y when X was  known to be a 
particular value in our model. In some cases the conditional probabilities may be expressable as functions containing 
the unspecified value x of X as a parameter. When both "X" and "Y" are categorical department-level morbidity-
related, geomorphological, stratified explanators, a conditional probability table may be typically employed to 
represent the conditional probability. The conditional distribution may contrast with the marginal distribution of a 
random, specified, morbidity-related, predictive variable, which may reveal a distribution without reference to the 
value of the other geo-sampled department-level variables. 

If the conditional distribution of Y given X is a continuous probability distribution, in a forecast, 
vulnerability, department-level, geomorphological, stratified, morbidity model then its’  PDF  may be known 
the conditional density function. When both "X" and "Y" are categorical variables, a conditional probability table is 
typically used to represent the conditional probability. The conditional distribution contrasts with the marginal 
distribution of a random variable, which is its distribution without reference to the value of the other variable. 
In probability theory and statistics, the marginal distribution of a subset of a collection of random variables is 
the probability distribution of the variables contained in the subset. In a forecast, vulnerability, epidemiological 
morbidity-related, model may render the probabilities of various geo-spatiotemporal, morbidity frequency values of 
the variables in the subset without reference to the values of the other geosampled variables. 

  Suppose that two random geo-referenceable, morbidity-related, department-level, geo-morphological, 
stratified, geo-sampled, forecast, vulnerability, geo-spatiotemporal variables  and  has a joint density 

function . The joint probability distribution can be expressed either in terms of a joint cumulative distribution 
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function or in terms of a joint probability density function (in the case of continuous morbidity geo-sampled geo-

spatiotemporal variables) or joint probability mass function (in the case of discrete variables) [17].  If , 
in the  model, then an epidemiologist or public health officer may  define the conditional density 

function  given  by  Similarly an epidemiologist or public health 

manager  can define the conditional density function  given  by  

if . Then, clearly we have the following relation  The 
properties of a conditional distribution, such as the moments, are often referred to by corresponding names such as 
the conditional mean and conditional variance [6]. 

More generally, an epidemiologist or other public health officer  in Guatemala may refer to the conditional 
distribution of an empirically regressed, epidemiological, morbidity-related, department-level, geomorphological, 
stratified, time series subset of a dataset of more than two variables; this conditional distribution may be contingent 
on the values of all the remaining variables, and if more than one variable is included in the subset then this 
conditional distribution may be the conditional joint distribution of the included variables. 

 
 An epidemiologist or public health officer in Guatemala may also recover the survival function in  an  

departmental-level, geomorphological stratified, epidemiological, morbidity, forecaast, vulnerability model 
employing multiple, temporally dependent, landscape and socio-demiographic covariates.  For example, whenever 

, is optimally derivable in a vulnerability, morbidity regression forecast, model, an 

epidemiologist or public health officer should be  able to solve  The function 

 may be definable by a the cumulative hazard rate function. In so doing, the cumulative hazard 
rate function would be an alternative way of representing the hazard rate function in a department-level, 
geomorphologically stratifiable, morbidity, forecast, and, vulnerability model. 

  
 The probability for a robust, discrete, department-level, geomorphological, stratified, 

epidemiological, morbidity, explanatorial geo-referenecable variable  may be also optimally derivable from the 
non-homogeneous Poisson process. The continuous random variable , may be the time until the first change in the 
morbidity model may be related to  in the model renderings. Hence the equation   

  may be able to quantitate the predicted probability in a 
morbidity model employing landscape and demographic, geo-spatiotemporal regressors. The distribution function 
and density function may also be derivable accordingly. In so doing, the hazard rate function  may be 

equivalent to each of the following: and . 

A non-homogeneous Poisson process as described in this research, may determine, the hazard rate function 
 whilst specifying the probability distribution of a department-level, geo-spatiotemporal, geo-morphological 

stratifiable, explanatorial, forecast, vulnerability morbidity, model (i.e., the time until the first change). Once the 
rate of change function is known in the non-homogeneous Poisson process, an epidemiologist or public health 
officer can use it to generate the survival function . Examples of department-level stratifiable, exploratory, 
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morbidity models may be constructed by assuming the functional form of the hazard rate function. The result may 
hold even outside the context of a non-homogeneous Poisson process, that is, given the hazard rate function , an 
epidemiologist or public health officer may be able to derive three distributional items , , . 

Note that a measured covariate in a   forecast, vulnerability, morbidity epidemiological geomorphological, 
stratifiable, model with respect to λ, and r may be absolutely continuous. In such circumstances   a department-level 
epidemiological, forecast, vulnerability model may determine the random distribution function and 
the deterministic distribution function in the model. A process that produces random points in time (i.e., a non-
homogeneous Poisson process) with rate function r may also define the counting process N which may satisfy the 
following properties in a forecast vulnerability, morbidity model: 

a. If {Ai:i∈I}is a countable, disjoint collection of measurable related  subsets of [0,∞) then {N(Ai):i∈I}is a 
collection of independent random variables. 

b. If A⊆[0,∞)A⊆[0,∞) is measurable geo-sampled,  geo-referenceable,  capture point (department-level, 
hyperendemic geolocation) [e.g.,  then N(A) has the Poisson distribution with parameter m(A)m(A)]. 

5. Limitations  

Historically, the indigenous people of Guatemala have been the backbone of its very economy.  Today, 
they are employed in the agricultural and textile sector given hunger wages [11].  With the historical stigma of being 
of indigenous ancestry, the population today considers itself with a now increased 60% Mayan.  Those that mostly 
identify with Mayan ancestry as well as other indigenous community live in rural and in the highlands of Guatemala.  
With Spanish being the official language of Guatemala, many indigenous people do not speak it.  This creates 
barriers to education, training, healthcare, and other public services. Distinctively, there is a small community of 
people without an association to the Maya, the Garifuna and Xinka [11]. 

 
There have been many readings as Guatemala as the case study.  Ramírez et al found connections made 

with violent deaths in men associated when pay days coincide with holidays [18]. Guberek and Hedstrom found that 
there have been changes in how deaths have been classified [19].  Cerón et al found that the indigenous suffer from 
abuse and discrimination in public health care facilities [20].  Poder and He associated social inequality affecting 
child health, income, and maternal education [21].  Hernandez et al found out that in health care, support is needed 
in mid-level workers [22]. Although there is much qualitative value from these studies, quantifiable data is needed to 
know the gravity of morbidity in Guatemala. 

 
Although morbidity model revealed a covariate of statistical significance output at a 95% confidence 

interval (malnutrition), our data set is limited temporally.  In future, forecast, vulnerability, morbidity regression, 
endemic model construction, larger geo-spatiotemporal, geomorphological-stratified, geo-classified, empirical, 
parameterizable, estimator dataset should be utilized as the independent variable.  Further geospatially weighted 
frequency autocorrelation model should be constructed using geo-classifiable, departmental level, geo-referenceable, 
data feature attributes in AUTOREG.  In so doing, clustering tendencies in empirical time series morbidity-related, 
departmental level, and morbidity statistics can be quantitatively assessed.  Additionally, an autocorrelation model 
may tease out pseudo-replicated morbidity prognosticators in geographic space.  In so doing, departmental-level, 
covariates may target specific provincial regions in Guatemala and prioritize for resource allocation.  Figures 5 and 
6 are pictures of one of Guatemala City’s major hospital, Roosevelt Hospital. 
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Figure 5 [25] - Roosevelt Hospital in Guatemala City, Guatemala 

 

 
Figure 6 [27] - Emergency Room Entranc 
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Appendix 1  

Non-homogeneous Poisson processes are best described in measure-theoretic terms. For exampled a basic 
measure space  may be illustratable  as \( [0, \infty) \) with the \( \sigma \)-algebra of Borel measurable subsets 
(named for Émile Borel). As usual, \( \lambda \) denotes Lebesgue measure on this space, named for Henri 
Lebesgue. Recall that the Borel \( \sigma \)-algebra is the one generated by the intervals, and \( \lambda \) is the 
generalization of length on intervals. 

Of all of our various characterizations of the ordinary Poisson process, in terms of the inter-arrival times, 
the arrival times, and the counting process, the characterizations involving the counting process leads to the most 
natural generalization to non-homogeneous processes. Thus, consider a process that generates random points in 
time, and as usual, let \( N_t \) denote the number of random points in the interval \( (0, t] \) for \( t \ge 0 \), so that \( 
\bs{N} = \{N_t: t \ge 0\} \) is the counting process. More generally, \( N(A) \) denotes the number of random points 
in a measurable \( A \subseteq [0, \infty) \), so \( N \) is our random counting measure. As before, \( t \mapsto N_t \) 
is a (random) distribution function and \( A \mapsto N(A) \) is the (random) measure associated with this 
distribution function. 

Suppose now that \( r: [0, \infty) \to [0, \infty) \) is measurable, and define \( m: [0, \infty) \to [0, \infty) \) 
by \[ m(t) = \int_{(0, t]} r(s) \, d\lambda(s) \] From properties of the integral, \( m \) is increasing and right-
continuous on \( [0, \infty) \) and hence is distribution function. The positive measure on \( [0, \infty) \) associated 
with \( m \) (which we will also denote by \( m \)) is defined on a measurable \( A \subseteq [0, \infty) \) by \[ m(A) 
= \int_A r(s) \, d\lambda(s) \] Thus, \( m(t) = m(0, t] \), and for \( s, \, t \in [0, \infty) \) with \( s \lt t \), \( m(s, t] = 
m(t) - m(s) \). Finally, note that the measure \( m \) is absolutely continuous with respect to \( \lambda \), and \( r \) is 
the density function. Note the parallels between the random distribution function and measure \( N \) and the 
deterministic distribution function and measure \( m \). With the setup involving \( r \) and \( m \) complete, we are 
ready for our first definition. 
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A process that produces random points in time is a non-homogeneous Poisson process with rate function \( r \) if the 
counting process \( N \) satisfies the following properties: 

1. If \( \{A_i: i \in I\} \) is a countable, disjoint collection of measurable subsets of \( [0, \infty) \) then \( 
\{N(A_i): i \in I\} \) is a collection of independent random variables. 

2. If \( A \subseteq [0, \infty) \) is measurable then \( N(A) \) has the Poisson distribution with parameter \( 
m(A) \). 

Property (a) is our usual property of independent increments, while property (b) is a natural generalization of 
the property of Poisson distributed increments. Clearly, if \( r \) is a positive constant, then \( m(t) = r t \) for \( t \in 
[0, \infty) \) and as a measure, \( m \) is proportional to Lebesgue measure \( \lambda \). In this case, the non-
homogeneous process reduces to an ordinary, homogeneous Poisson process with rate \( r \). However, if \( r \) is not 
constant, then \( m \) is not linear, and as a measure, is not proportional to Lebesgue measure. In this case, the 
process does not have stationary increments with respect to \( \lambda \), but does of course, have stationary 
increments with respect to \( m \). That is, if \( A, \, B \) are measurable subsets of \( [0, \infty) \) and \( \lambda(A) 
= \lambda(B) \) then \( N(A) \) and \( N(B) \) will not in general have the same distribution, but of course they will 
have the same distribution if \( m(A) = m(B) \). 

In particular, recall that the parameter of the Poisson distribution is both the mean and the variance, so \( 
\E\left[N(A)\right] = \var\left[N(A)\right] = m(A) \) for measurable \( A \subseteq [0, \infty) \), and in particular, \( 
\E(N_t) = \var(N_t) = m(t) \) for \( t \in [0, \infty) \). The function \( m \) is usually called the mean function. Since \( 
m^\prime(t) = r(t) \) (if \( r \) is continuous at \( t \)), it makes sense to refer to \( r \) as the rate function. Locally, at 
\( t \), the arrivals are occurring at an average rate of \( r(t) \) per unit time. 

As before, from a modeling point of view, the property of independent increments can reasonably be evaluated. 
But we need something more primitive to replace the property of Poisson increments. Here is the main theorem. 

A process that produces random points in time is a non-homogeneous Poisson process with rate function \( r \) 
if and only if the counting process \( \bs{N} \) satisfies the following properties: 

1. If \( \{A_i: i \in I\} \) is a countable, disjoint collection of measurable subsets of \( [0, \infty) \) then \( 
\{N(A_i): i \in I\} \) is a set of independent variables. 

2. For \( t \in [0, \infty) \), \begin{align} &\frac{\P\left[N(t, t + h] = 1\right]}{h} \to r(t) \text{ as } h 
\downarrow 0 \\ &\frac{\P\left[N(t, t + h] > 1\right]}{h} \to 0 \text{ as } h \downarrow 0 \end{align}  

So if \( h \) is small the probability of a single arrival in \( [t, t + h) \) is approximately \( r(t) h \), while the 
probability of more than 1 arrival in this interval is negligible. 

Suppose that we have a non-homogeneous Poisson process with rate function \( r \), as defined above. As 
usual, let \( T_n \) denote the time of the \( n \)th arrival for \( n \in \N \). As with the ordinary Poisson process, we 
have an inverse relation between the counting process \( \bs{N} = \{N_t: t \in [0, \infty)\} \) and the arrival time 
sequence \( \bs{T} = \{T_n: n \in \N\} \), namely \( T_n = \min\{t \in [0, \infty): N_t = n\}\), \(N_t = \#\{n \in \N: 
T_n \le t\} \), and \( \{T_n \le t\} = \{N_t \ge n\} \), since both events mean at least \( n \) random points in \( (0, t] \). 
The last relationship allows us to get the distribution of \( T_n \). 

For \( n \in \N_+ \), \( T_n \) has probability density function \( f_n \) given by \[ f_n(t) = \frac{m^{n-1}(t)}{(n - 
1)!} r(t) e^{-m(t)}, \quad t \in [0, \infty) \]  

Proof:  
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Using the inverse relationship above and the Poisson distribution of \( N_t \), the distribution function of \( T_n \) is 
\[ \P(T_n \le t) = \P(N_t \ge n) = \sum_{k=n}^\infty e^{-m(t)} \frac{m^k(t)}{k!}, \quad t \in [0, \infty) \] 
Differentiating with respect to \( t \) gives \[ f_n(t) = \sum_{k=n}^\infty \left[-m^\prime(t) e^{-m(t)} 
\frac{m^k(t)}{k!} + e^{-m(t)} \frac{k m^{k-1}(t) m^\prime(t)}{k!}\right] = r(t) e^{-m(t)} \sum_{k=n}^\infty 
\left[\frac{m^{k-1}(t)}{(k - 1)!} - \frac{m^k(t)}{k!}\right] \] The last sum collapses to \( m^{n-1}(t) \big/ (n - 1)! \). 

The functional form of this probability density function is clearly similar to the gamma distribution, and indeed, \( 
T_n \) can be transformed into a random variable with a gamma distribution. This amounts to a time change which 
will give us additional insight into the non-homogeneous Poisson process. 

Let \( U_n = m(T_n) \) for \( n \in \N_+ \). Then \( U_n \) has the gamma distribution with shape parameter \( n \) 
and rate parameter \( 1 \) 

Proof:  

Let \( g_n \) denote the PDF of \( U_n \). Since \( m \) is strictly increasing and differentiable, we can use the 
standard change of variables formula. So letting \( u = m(t) \), the relationship is \[ g_n(u) = f_n(t) \frac{dt}{du} \] 
Simplifying gives \( g_n(u) = u^{n-1} e^{-u} \big/(n - 1)! \) for \( u \in [0, \infty) \). 

Thus, the time change \( u = m(t) \) transforms the non-homogeneous Poisson process into a standard (rate 1) 
Poisson process. Here is an equivalent way to look at the time change result. 

For \( u \in [0, \infty) \), let \( M_u = N_t \) where \( t = m^{-1}(u) \). Then \( \{M_u: u \in [0, \infty)\} \) is the 
counting process for a standard, rate 1 Poisson process. 

Proof:  

1. Suppose that \( (u_1, u_2, \ldots) \) os a sequence of points in \( [0, \infty) \) with \( 0 \le u_1 \lt u_2 \lt 
\cdots \). Since \( m^{-1} \) is strictly increasing, we have \( 0 \le t_1 \lt t_2 \lt \cdots \), where of course \( 
t_i = m^{-1}(u_i) \). By assumption, the sequence of random variables \( \left(N_{t_1}, N_{t_2} - 
N_{t_1}, \ldots\right) \) is independent, but this is also the sequence \( \left(M_{u_1}, M_{u_2} - 
M_{u_1}, \ldots\right) \). 

2. Suppose that \( u, \, v \in [0, \infty) \) with \( u \lt v \), and let \( s = m^{-1}(u) \) and \( t = m^{-1}(v) \). 
Then \( s \lt t \) and so \( M_v - M_u = N_t - N_s \) has the Poisson distribution with parameter \( m(t) - 
m(s) = v - u \). 

Equivalently, we can transform a standard (rate 1) Poisson process into a a non-homogeneous Poisson process with 
a time change. 

Suppose that \( \bs{M} = \{M_u: u \in [0, \infty)\} \) is the counting process for a standard Poisson process, and let 
\( N_t = M_{m(t)} \) for \( t \in [0, \infty) \). Then \( \{N_t: t \in [0, \infty)\} \) is the counting process for a non-
homogeneous Poisson process with mean function \( m \) (and rate function \( r \)). 

Proof:  

1. Let \( (t_1, t_2, \ldots) \) be a sequence of points in \( [0, \infty) \) with \( 0 \le t_1 \lt t_2 \lt \cdots \). Since 
\( m \) is strictly increasing, we have \( 0 \le m(t_1) \lt m(t_2) \lt \cdots \). Hence \( \left(M_{m(t_1)}, 
M_{m(t_2)} - M_{m(t_1)}, \ldots\right) \) is a sequence of independent variables. But this sequence is 
simply \( \left(N_{t_1}, N_{t_2} - N_{t_1}, \ldots\right) \). 

2. If \( s, \, t \in [0, \infty) \) with \( s \lt t \). Then \( N_t - N_s = M_{m(t)} - M_{m(s)} \) has the Poisson 
distribution with parameter \( m(t) - m(s) \). 


